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Abstract. By dimensional reduction in the sense of Parisi and Sourlas (PS), the gauge fixing term in the
abelian gauge of the SU(2) Yang–Mills field is reduced to a two-dimensional O(3) nonlinear σ model. The
confinement potential is obtained from magnetic monopoles and frame fluctuations. But the source of
quark confinement is frame fluctuations and not magnetic monopoles. Because the frame T a cannot be
regarded as a fixed one, the abelian projected SU(2) Yang–Mills field turns into a U(1)×U(1) gauge field
– one group element being exp(iϕ3T 3) with fixed frame T 3, another group gauging the frame T 3. The
nonperturbative part �µ (x) becomes a dynamical gauge field in two dimensions, giving rise to the short
range linear potential.

1 Introduction

It is widely believed that the strong interaction is de-
scribed by a Lagrangian density with a non-abelian SU(3)
gauge theory of quarks and gluons [1,2], which is called
QCD:

L = − 1
2e2

trFµνF
µν +

Nf∏
i=1

ψ̄i (iγµDµ −Mi)ψi, (1)

where F a
µν = ∂µA

a
ν−∂νAa

µ +eεabcA
a
µA

a
ν is an SU(3) gauge

field, and Ψi are quark fields with the index i labeling the
flavors. Thus do appear the rich phenomena of QCD like
color confinement, dynamical chiral-symmetry breaking,
asymptotic freedom and quantum anomalies. In particu-
lar, confinement is the most outstanding feature in non-
perturbative QCD. An isolated quark and an isolated anti-
quark have never been observed in experiments. Nowadays
they are considered to be confined in the hadrons. This is
the hypothesis of quark confinement.

In the lattice gauge theory it is easy to show that the
hypothesis of quark confinement is right in the strong cou-
pling limit. However, this result could not be continued to
the weak coupling region where the string tension is ex-
pected to obey the scaling law suggested from the result of
the renormalization group based on loop calculations. The
first indication of [3] was based on numerical simulations
within lattice gauge theory.

Although numerical evidence of quark confinement was
indeed great progress towards the complete understanding
of quark confinement, the analytical proof is very difficult.

One of the most important properties of QCD is
asymptotic freedom, which was discovered by Gross,
Wilczek and Politzer and independently by ’t Hooft [4].

Using renormalization group properties (asymptotic free-
dom) one can express the coupling constant e(p/Λ) at the
scale p/Λ through Λ as

e2(p/Λ) =
−1

be0 ln
p2

Λ2

, be0 =
11cv
48π2 −

Nf

24π2 . (2)

Since perturbative QCD depends on the mass scale only
due to the renormalization through Λ, one can write

σ ∼ m2 = Λ2 exp
(
− 1
be0e

2

)
, (3)

where Λ is the cut-off momentum. It is clear that σ cannot
be obtained from the perturbation series; hence the source
of σ and of the whole confinement phenomenon is purely
nonperturbative.

Correspondingly one should admit in the QCD vacuum
a nonperturbative component and split the total gluonic
vector potential Aµ as follows:

Ãµ = Aµ + �µ, (4)

where �µ is the nonperturbative and Aµ the perturbative
part. As for �µ, it can be
(a) quasiclassical, i.e. consisting of a superposition of clas-
sical solutions like instantons, monopoles etc., or
(b) purely quantum (but nonperturbative).

It is very popular to assume that the nonperturbative
contributions �µ come only from magnetic monopoles or
instantons which exactly determine the low energy effec-
tive abelian gauge theory. There are examples showing
that quark confinement is caused by the condensation of
magnetic monopoles [5–11]. In the second picture, �µ may
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be a Parisi–Sourlas field in lower dimensions. For the ex-
ample of a SU(2) Yang–Mills field in abelian gauge, the
nonperturbative part � is a kind of frame connection field,
a new U(1) gauge field.

In this paper it is shown that the nonperturbative con-
tributions �µ come not only from a magnetic monopole
or instanton, but also from frame fluctuations. We will
calculate Wilson loops in both pictures and show their
differences.

We follow the approach that Kondo has used [13] to
discuss confinement of SU(2) Yang–Mills fields in a maxi-
mum abelian (MA) gauge. In the MA gauge, the physical
information of the gauge configuration is concentrated in
the diagonal components as much as possible. The off-
diagonal gluon is minimized by the gauge transformation.
Magnetic monopoles appear as topological excitations in
the abelian gauge, which diagonalizes a gauge-dependent
variable [6]. In the abelian gauge, SU(2) non-abelian gauge
theory is reduced to a U(1) one, and monopoles appear at
hedgehog-like configurations according to the nontrivial
homotopy group [6,7]

Π2 [SU(2)/U(1)] = Z.

Recent lattice studies with the MA gauge have indicated
monopole condensation in the Yang–Mills vacuum and the
relevant role of abelian degrees of freedom (abelian domi-
nance) [11].

It was shown that a version of an gauge fixing term
in MA gauge allows us to write it in the form which is
both BRST and anti-BRST exact. A hidden Osp(4 | 2)
supersymmetry was found based on the superspace for-
mulation of BRST invariant theories [14–19,13]. It turns
out that the hidden supersymmetry leads to dimensional
reduction in the sense of Parisi and Sourlas (PS) [14]. Con-
sequently the MA gauge fixing term of four-dimensional
SU(2) Yang–Mills fields turns into the equivalent two-
dimensional O(3) nonlinear σ model by the superspace
embedding.

Based on the equivalent two-dimensional O(3) nonlin-
ear σ model (NLSM), we advance the confinement mech-
anism from frame fluctuations. When the frame φ3 =
U−1 (x)T 3U (x) is not a fixed one in abelian projected
Yang–Mills theory, the abelian projected gauge field Aµ(x)
turns into Aφ

µ(x) + (1/e)�µ, and the original abelian pro-
jected SU(2) Yang–Mills field obtains another U(1) local
symmetry and turns into a U(1)×U(1) local symmetry –
one group element being exp(iϕ3T 3) with fixed frame T 3,
another gauging the frame T 3. At the same time the non-
perturbative component �µ appears. In the propagator of
the vector field �µ (x), a massless pole appears. Hence the
frame connection field �µ (x) becomes a dynamical gauge
field in two dimensions, giving rise to a confining potential.
The Feynman diagram for two test particles with oppo-
site charges q scattering by exchanging one Wµ shows the
short range (SR) linear potential between them (massive
or massless) by

Vframe (r) = VSR ∼ −q
e
Λ2 exp

(
− 1
be0e

2

)
r. (5)

In the limit r →∞, due to the screening effect of z pairs,
the long range (LR) confining potential shows a periodic
behavior in q/e described by

VLR (r →∞, q/e) = VLR (r →∞, q/e± 1) . (6)

The contribution to the confinement potential from
monopoles is easy to obtain [13]. Because the instanton
configuration in two-dimensional O(3) NLSM can be iden-
tified with the magnetic monopole configuration in four
dimensions, the planar Wilson loop in four-dimensional
SU(2) Yang–Mills theory in MA gauge is calculated in
the two-dimensional O(3) NLSM by making use of PS di-
mensional reduction [20]. In the limit r → ∞, due to the
screening effect, the confining potential is a long range
one:

Vmonop(r) = VLR (r →∞)

∼ −
(

1− cos
2πq
e

)
Λ2 exp

(
− 1
be0e

2

)
r. (7)

For q = Ne, where N is any integer, the long range linear
potential vanishes.

Finally, the short range linear potential VSR(r) for
quark confinement is related to Vframe (r), but on the other
hand Vmonop(r) to a long range linear potential which
vanishes for quark and anti-quark. Hence the quark-con-
finement mechanism is from the frame fluctuations, not
monopole condensation!

This paper is organized as follows.
In Sect. 2, the Lagrangian is constructed from a MA

gauge fixing term dependent on gauge modes g (x). The
gauge fixing term is written in the exact form with the
BRST transformation δB and the anti-BRST transforma-
tion δ̄B .

In Sect. 3, we introduce a superspace embedding pa-
rameter s. From it, the relation between s and γ in su-
perspace is obtained as

(
4s2/γ

)
= iα. Through PS di-

mensional reduction [14], the MA gauge fixing term of the
four-dimensional Yang–Mills field is reduced to the equiv-
alent two-dimensional O(3) nonlinear σ model. Because
the coupling constant λ for the O(3) nonlinear σ model
depends on e2 and α, we solve λ from the known β (Λ)
function of e2.

In Sect. 4 we introduce the confinement mechanism
by frame fluctuations. In addition, the frame connection
field �µ (x) can be regarded as a dynamical Parisi–Sourlas
gauge field Wl

(
x, θ, θ̄

)
for the reason of Osp(4|2) super-

symmetry. The short range linear potential between quark
and anti-quark (massive or massless) for QCD in four di-
mensions is obtained by exchanging one Wµ.

In Sect. 5 the confinement mechanism from monopole
condensation is reviewed. The method developed by
Kondo is similar to the calculation of the Wilson loop
in the abelian Higgs model in two dimensions [20].

In Sect. 6 we draw the conclusion that the source for
quark confinement via the short range linear potential
VSR(r) is frame fluctuations, not magnetic monopole con-
densation.
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2 Abelian gauge fixing and abelian projection

Let us begin with the abelian gauge fixing and abelian
projection.

The basic idea of abelian projection proposed by ’t
Hooft is to remove as many non-abelian degrees of freedom
as possible, by partially fixing the gauge in such a way that
there remain the local U(1) symmetry and the global Weyl
symmetry [21]. Under the abelian projection, SU(2) gauge
theory reduces to the H = U(1) abelian gauge theory plus
magnetic monopoles.

For any composite field Φ transforms as an adjoint
representation of the SU(2) Lie group:

Φ→ Φ′ = g−1Φg, (8)

where g (the gauge) is a specific unitary matrix. Φ′ is
diagonal

Φ′ = g−1Φg = diag(λ1, λ2). (9)

For Φ from the Lie algebra of SU(2), one can choose λ1 ≤
λ2. It is clear that g is determined up to left multiplication
by a diagonal SU(2) matrix:

g =
(

cosφeiθ sinφeiχ

− sinφe−iχ cosφe−iθ

)
, (10)

where

χ = ∆− α/2, θ = −∆− α/2, φ = γ/2.

Here α and γ are the azimuthal and polar angles of the ref-
erence system in the given time slice; ∆(x) is an arbitrary
function.

Now Aµ is transformed to the gauge

A(Ω)
µ = g−1

(
Aµ +

i
e
∂µ

)
g, (11)

and we will consider how the components of A(Ω)
µ trans-

form under U(1). The diagonal ones

Ai
µ ≡ (A(Ω)

µ )ii, (12)

transform as “photons”:

Ai
µ → Ai

µ = Ai
µ +

1
e
∂µφi, (13)

while the nondiagonal ones, Aij
µ ≡ (AΩ

µ )ij , transform as
charged fields:

A
′ij
µ = exp[i(φi − φj)]Aij

µ . (14)

Actually, the choice for SU(2) is nothing but the condition
of minimizing the functional R[A] for the gauge rotated
off-diagonal gluon fields A, i.e., with minR[AΩ ],

R[A] =
1
2

∫
d4x[(A1

µ(x))2 + (A2
µ(x))2]

=
∫

d4xA+
µ (x)A−

µ (x). (15)

For SU(2), the MA gauge fixing condition is given by

F±[A, a] = (∂µ ± ieA3
µ)A±

µ = 0, (16)

using the (±, 3) basis,

O± = (O1 ± iO2)/
√

2. (17)

The simplest choice of Ggf for the MA gauge in the (±, 3)
basis is given by

Ggf =
∑
±
C± (

F±[A±
µ , A

3
µ] +

α

2
φ±

)
. (18)

Using the Faddeev–Popov formula [22], we have the path
integral function

Z =
∫

DAµDgDφDCDC

× exp
(

i
∫ (

− 1
2e2

trFµνF
µν + Lg

)
dx4

)
, (19)

where the MA gauge fixing term Lg would be

Lgf = −tr
(
φF a[A, a] +

α

2
φa2 + C̄a∂µDµ

[
(A±

µ )
] Ca) ,

(20)
where a = ±.

The standard formulae of the BRST δB and anti-BRST
δ̄B are

δBAµ(x) = ∂µC(x), δBφ(x) = 0, (21)

δBC(x) = 0, δBC(x) = iφ(x),
δBφ(x) = δBφ̄(x) = 0,

δ̄BAµ(x) = ∂µC(x), δ̄Bφ̄(x) = 0,

δ̄BC(x) = iφ̄(x), δ̄BC(x) = 0,
δ̄Bφ(x) = δ̄Bφ̄(x) = 0,

and
φ(x) + φ̄(x) = [C(x), C(x)].

The BRST and anti-BRST transformations have the fol-
lowing properties:

(δB)2 = 0, (δ̄B)2 = 0, {δB , δ̄B} = δB δ̄B + δ̄BδB = 0.
(22)

The BRST δB and anti-BRST δ̄B , Lg that we used turn
into a very compact form:

Lgf = iδB δ̄Btr
(

1
2

[(
A±
µ

)Ω=g
]2

+
iα
2
C±C±

)
. (23)

For convenience we replace A±
µ by

(
A±
µ

)Ω=g where

(
A±
µ

)Ω=g = g−1A±
µ g +

1
ie
g−1∂µg,

g(x) ∝ SU(2)/U(1).
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3 Hidden supersymmetry
and superspace embedding

3.1 Hidden supersymmetry
and Parisi–Sourlas dimensional reduction

In a (4+2)-dimensional superspace,
[
(1/2)

(
g−1∂µg

+ieg−1A±
µ g

)2 + (iα)/(C)±C±]
can be a contravariant su-

pervector which transforms like the supercoordinate under
Osp(4| 2). Thus a (4+2)-dimensional superspace M with
coordinates is written

XM = (xµ, θ, θ̄) ∈M, x ∈ R4, (24)

where xµ denotes the coordinate of the four-dimensional
Euclidean space, θ and θ̄ are anti-Hermitian Grassmann
numbers. The inner product of two vectors is defined by
introducing the superspace (covariant) metric tensor ηMN

with components

ηµν = δµν , ηθθ̄ = −ηθ̄θ = −2/γ, others = 0. (25)

The covariant supervector of quadratic form is

XMXM = XMηMNX
N = x2 + (4/γ)θ̄θ. (26)

The supervector AM = (Aµ,Aθ,Aθ̄) transforms like the
supercoordinate under the orthosymplectic supergroup
Osp(4| 2). The orthosymplectic supergroup Osp(4| 2) in-
cludes the four-dimensional orthogonal group O(4) which
leaves x2 invariant and the symplectic group Osp(2) of
transformations leaving θθ̄ invariant.

The connection one-form (superspace vector potential)
A(X) and its curvature (superspace field strength) F(X)
in the superspace are

A(X) = AM (X)dXM = Aµ(x, θ, θ̄)dxµ

+ Aθ(x, θ, θ̄)dθ +Aθ̄(x, θ, θ̄)dθ̄, (27)

F(X) = DA(X) +
1
2

[A(X),A(X)],

where D is the exterior differential in the superspace,

D = d + δ + δ̄ =
∂

∂xµ
dxµ +

∂

∂θ
dθ +

∂

∂θ̄
dθ̄. (28)

Setting

F(X) =
1
2
Fµν(X)dxµdxν , (29)

we have the horizontal condition

FMθ(X) = FMθ̄(X) = 0. (30)

From the horizontal condition, the dependence of the su-
perfield AM (x, θ, θ̄) on θ, θ̄ is determined as follows:

∂θAµ(X) = ∂µAθ(X)− i[Aµ(X),Aθ(X)],

∂θAθ(X) = i
1
2

[Aθ(X),Aθ(X)],

∂θ̄Aµ(X) = ∂µAθ̄(X)− i[Aµ(X),Aθ̄(X)],

∂θ̄Aθ̄(X) = i
1
2

[Aθ̄(X),Aθ̄(X)],

∂θAθ̄(X) + ∂θ̄Aθ(X) = −{Aθ(X),Aθ̄(X)}. (31)

For the components which cannot be determined by the
horizontal condition alone, we use the following identifi-
cation:

∂θAθ̄(x, 0, 0) = iΘ(x), ∂θ̄Aθ(x, 0, 0) = iΘ̄(x). (32)

This corresponds to Fθθ̄ = 0 and gives

iΘ(x) + iΘ̄(x) + {Aθ(x),Aθ̄(x)} = 0. (33)

From these results, it turns out that the derivatives in
the direction of θ, θ̄ give respectively the BRST and the
anti-BRST transformations,

∂

∂θ
=sδB ,

∂

∂θ̄
=sδ̄B . (34)

At the same time, if we require that

Aµ(X) |θ=0,θ̄=0= Aµ(x, 0, 0) = g−1∂µg+ieg−1A±
µ g, (35)

we find “the superspace embedding relation” to be

Aθ(x) = sC±(x), Aθ̄(x) = sC±
(x), (36)

Θ(x) = s2φ(x), Θ̄(x) = s2φ̄(x),

where s is a c-number.
Then the inner product of A(X) is

ηNMAM (X)AN (X) = Aµ(X)Aµ(X) + (2/γ)
× [Aθ(X)Aθ̄(X) +Aθ̄(X)Aθ(X)] , (37)

which is invariant under superrotations. From “the super-
space embedding relation”, we have

ηNMAM (X)AN (X) = Aµ(X)Aµ(X)

+
(

4s2

γ

)
C(X)C(X), (38)

= (Aµ(X))2 + iαC(X)C(X).

Then the relation between s and γ in superspace is ob-
tained: (

4s2

γ

)
= iα. (39)

The operator

O(x) = itr
[

1
2

(
g−1∂µg + ieg−1A±

µ g
)2

+
iα
2
C±(x)C̄±(x)

]
(40)

has the corresponding superfield given by

O(X) =
i
2

tr
(
(Aµ(X))2

+ (2/γ) [Aθ(X)Aθ̄(X) +Aθ̄(X)Aθ(X)]) .
(41)

Then the superfield O(X) is written in Osp(4| 2) invariant
form as

O(X) =
i
2

tr
(
ηNMAM (X)AN (X)

)
. (42)
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For the Grassmann number, the integration
∫

dθ
(∫

dθ̄
)

is
equivalent to the differentiation d/dθ

(
d/dθ̄

)
. Hence the

BRST δB and anti-BRST δB transformation have the fol-
lowing correspondence:

sδB ↔ d
dθ
↔

∫
dθ, (43)

sδ̄B ↔ d
dθ̄
↔

∫
dθ̄.

This implies∫
dθdθ̄O(x, θ, θ̄) = − ∂

∂θ

∂

∂θ̄
O(x, θ, θ̄) (44)

= −s2δ̄BδBO(x) = s2δB δ̄BO(x).

Thus the action can be written in the manifestly super-
space covariant form:

Sgf =
i

2s2

∫
d4x

∫
dθdθ̄tr(ηNMAM (X)AN (X)). (45)

Let us split the four-dimensional Euclidean space into two
subsets,

x = (z, x̂) ∈ R4, z ∈ R2, x̂ ∈ R2.

Hence, for the supersymmetric operator O(X) one obtains

O(x, θ, θ̄) = f(z, x̂2) +
4
γ
θ̄θ

d
dx̂2 f(z, x̂2). (46)

Therefore, for the gauge fixing action of the supersymmet-
ric model we find

Sgf =
1
s2

∫
d4x

∫
dθdθ̄O(x, θ, θ̄) (47)

=
1
s2

∫
d2z

∫
d2x̂

∫
dθ

∫
dθ̄

4
γ
θ̄θ

d
dx̂2 f(z, x̂2)

=
−4
s2γ

∫
d2z

∫
d2x̂

d
dx̂2 f(z, x̂2)

=
4π
s2γ

∫
d2zO0((z, 0), 0, 0),

where we have assumed f(z,∞) ≡ O0((z,∞), 0, 0) = 0.
Thus the four-dimensional MA gauge fixing term of

the Yang–Mills field is reduced to the two-dimensional
SU(2)/U(1) = O(3) nonlinear σ model (NLSM). In our
model, the operator is

O0((z, 0), 0, 0) =
[(
g−1∂µg + ieg−1A±

µ g
)2

+ iαC±(x)C±
(x)

]
. (48)

Then the action is reduced to a two-dimensional nonlinear
sigma model by

Sgf =
i

2s2

∫
d4x

∫
dθdθ̄tr(ηNMAM (X)AN (X))

= − 1
2λ

∫
dx2tr

[(
g−1∂µg + ieg−1A±

µ g
)2

+ iαC±(x)C±
(x)

]
, (49)

where λ = −s4e2/(πα).

3.2 One-loop superspace embedding parameter

The superspace embedding factor s (p) is a key parameter
to bridge the original Yang–Mills field Aµ and the gauge
modes g (x) in the sigma model. But it is still unknown.
Because the coupling constant λ for the O(3) nonlinear σ
model is dependent on e2, α and s, we can solve s from
the known β (p/Λ) function of e2, α and λ [4].

To approach the O(3) nonlinear σ model [23,24], the
g field is also divided into two parts [25]: one is the slowly
varying vector g0; the other the fast one ξ (x);

g = g0 exp [iλξ (x)] . (50)

The ξ (x) are Goldstone modes which obtain a mass gap
m2 in the disorder phase. By g0 and ξ (x), we can rewrite
the action

Sgf = − 1
2λ

∫
dx2tr

[(
g−1∂µg + ieg−1A±

µ g
)2

+ iαC±(x)C±
(x)

]
, (51)

to

Sgf = S
(
g0, A

±
µ

)
+

∫
dx2tr

{
(∂µξ)

2

+
1
2

(
g−1
0 ∂µg0 + ieg−1

0 A±
µ g0

)
[ξ, ∂µξ]

}
. (52)

Note that
(
g−1
0 ∂µg0 + ieg−1

0 A±
µ g0

)
plays the role of a back-

ground field. In two dimensions, the one-loop effective ac-
tion is written as

tr
(
g−1
0 ∂µg0 + ieg−1

0 A±
µ g0

)2
(

1
4π

ln
Λ2

p2

)
. (53)

The β (λ) function of λ is given by

β (λ) = Λ
∂λ

∂Λ
= −bλ0λ2, (54)

with bλ0 = 1/(4π).
To calculate the β

(
e2

)
function of e2, one must con-

sider the off-diagonal gluons. It was shown that the off-
diagonal gluons renormalize the effective abelian gauge
theory and let the coupling constant of effective abelian
gauge theory run according to the renormalization group
β function which is exactly the same as the original QCD,
at least up to one loop [26]. Then the β

(
e2

)
function of

e2 is

β
(
e2

)
= −be0e4, (55)

be0 =
11cv
48π2 −

Nf

24π2 ,

where Nf is the flavor number of fermions.
Up to one loop in the high energy limit p2 → ∞, the

renormalization behaviors of the known parameters is de-
scribed by

λ (p→∞) =
−1

bλ0 ln (p2/Λ2)
, (56)

e2 (p→∞) =
−1

be0 ln (p2/Λ2)
,



118 Kou Su-Peng: Quark-confinement mechanism for SU(2) Yang–Mills theory in abelian gauge

where Λ is an energy cut-off. The solution of s of one loop
is

s =
(
−παλ

e2

)1/4
∣∣∣∣∣
p→∞

=
(
−παb

e
0

bλ0

)1/4

. (57)

Using the solution we can keep the coupling constant in
the form

λ = −s
4e2

πα
=

be0
bλ0
e2 =

11
6π

(
1− Nf

11

)
e2, (58)

which is independent on the gauge parameter α 1.
For four-dimensional Yang–Mills theory the gauge fix-

ing term is reduced to

Sgf = − 1
2λ

∫
dx2tr

[(
g−1∂µg + eg−1A±

µ g
)2

+ iαC±(x)C±
(x)

]
. (59)

The SU(2) Yang–Mills case with asymptotic freedom can
be reduced to the corresponding two-dimensional O(3)
nonlinear σ model. In the two-dimensional O(3) nonlinear
σ model one has only one phase: a disorder phase without
long range order,

〈g〉 |2D= 0. (60)

In this phase the two branches of the Goldstone excitons
are massive. Up to one loop, the mass gap is obtained:

m2 = Λ2 exp
(
−4π
λ

)
= Λ2 exp

(
− 1
be0e

2

)
, (61)

where Λ is a cut-off.

4 Source of confinement
from frame fluctuations

4.1 Gauge theory without a fixed frame

To discuss the confinement mechanism as originating from
frame fluctuations we will need to learn about the concept
of frame fluctuations. We have considered an abelian pro-
jected Yang–Mills theory with fixed frame T 3. In the disor-
der phase of the corresponding two-dimensional O(3) non-
linear σ model, frame fluctuations are induced by quan-
tum fluctuations of the gauge modes. The frame cannot
be regarded as a fixed one T 3. We introduce the frame
field φ3(x) to indicate the color-direction variable. φ3(x)
is a composite field of the gauge modes g(x).

We require the following properties for the frame field
φ3(x) in the gauge field. The frame field φ(x) directly
corresponds to the gauge function U(x) ∈ SU(2)/U(1) via
φ3(x) = U−1(x)T 3U(x). The frame field φ3(x) consists of

1 For the cases without asymptotic freedom, be
0 < 0, one has

λ′
0 < 0 (for example the fermion flavor is larger than 16). The

solution of this case, λ = be
0e

2/(bλ
0 ) is not consistent and there

is no consistent solution at all. As a result the Yang–Mills field
is a pure perturbative field

the three components φj(x) (j = 1, 2, 3) of SU(2). Each
φj is defined to be a hermite composite scalar φj(x) =
φ3
jT

3 with φaj ∈ R. Corresponding to the direct product
of SU(2), the three components φj(x) are to commute with
each other: [φi(x), φj(x)] = 0, and they are normalized as
tr{φi(x)φj(x)} = (1/2)δij .

Without a fixed frame, the gauge field

Aµ(x) = A3
µ(x)T 3 (62)

changes its path-integral form. Let us obtain it through
the following path-integral function:

W [A] =
1
N tr

[
P exp

(
ie

∫ x

0
Aµdxµ

)]
. (63)

With the vacuum state

|φ (x) , Λ〉 = U(x)|Λ〉, U(x) ∈ SU(2)/U(1), (64)

we replace the trace with

tr(· · ·) =
∫

Dµ(φ)〈φN , Λ|(· · ·)|φN , Λ〉. (65)

The path-integral function is defined as the trace of the
path-ordered exponent along the closed loop C, where N
is the dimension of the representation, taken from 0 and
ending at x. The interval x can be divided into N infinites-
imal steps in the limit N → ∞, δx → 0 with Nδx = x
being kept fixed,

W [A] = lim
N→∞,δx→0

tr
N−1∏
n=0

[1 + iδxeAµ(xn)], (66)

where xn = nδx, δx = x/N . Inserting the complete set,

I =
∫
|φ,Λ〉Dµ(φ)〈φ,Λ|, (67)

we obtain

W [A] = tr
{
P exp

[
ie

∫ x

0
Aµ(x)dxµ

]}
(68)

= lim
N→∞,δx→0

∫
· · ·

∫
Dµ(φN )

× 〈φN , Λ|[1 + iδxeAµ(xN−1)]|φN−1, Λ〉
× Dµ(φN−1)
× 〈φN−1, Λ|[1 + iδxeAµ(xN−2)]|φN−2, Λ〉
× Dµ(φN−2) · · ·Dµ(φ1)
× 〈φ1, Λ|[1 + iδxeAµ(φ0)]|φN , Λ〉

= lim
N→∞δx→0

N∏
n=1

∫
Dµ(φ(xn))

× exp

[
iδx

N−1∑
n=0

eÃµ(xn)

]

×
N−1∏
n=0

〈φ(xn+1), Λ|φ(xn), Λ〉,
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where we have used φ0 = φN and we have defined

Ãµ(xn) =
〈φn+1, Λ|Aµ(xn)|φn, Λ〉

〈φn+1, Λ|φn, Λ〉 . (69)

Up to O(δx2), we find

Ãµ(xn) = 〈φn, Λ|Aµ(xn)|φn, Λ〉+ O(δx2) (70)

= 〈Λ|U(xn)†A(xn)U(xn)|Λ〉+ O(δx2),

and

〈φn+1, Λ|φn, Λ〉 = 〈φ(xn), Λ|φ(xn), Λ〉
+ δx〈dU(xn), Λ|φ(xn), Λ〉
+ O(δx2) (71)

= exp[−iδx〈Λ|idU(xn)†U(xn)|Λ〉
+ O(δx2)]

= exp[iδx〈Λ|iU(xn)†dU(xn)|Λ〉
+ O(δx2)].

Thus we obtain the path-integral representation of the
gauge field,

W [A] = lim
N→∞,δx→0

N∏
n=1

∫
Dµ(φ(xn)) (72)

× exp

{
ieδx

N−1∑
n=0

〈Λ|[U(xn)†A(xn)U(xn)

+ ie−1U(xn)†dU(xn)]|Λ〉}
=

∫
Dµ(φ)

× exp
(

ie
∫ x

0
〈Λ|

[
U†AµU +

i
e
U†dU

]
|Λ〉

)

×
∫

Dµ(φ)

× exp
(∫ x

0

[
ieφ3 ·Aφ

µ + i�µ

]
dxµ

)
,

where

�µ(x) = 〈Λ|iU†(x)∂µU(x)|Λ〉 (73)

= 〈Λ|iU−1(x)∂µU(x)|Λ〉
is called the frame connection field. The frame connection
field �µ is a new U(1) gauge field in two dimensions.

To simplify, we denote the frame connection field by

�µ(x) = iU−1(x)∂µU(x). (74)

Accordingly, the gauge field Ãφ
µ(x) without fixed frame

turns into Aφ
µ(x) + (1/e)�µ where

Aφ
µ(x) = 2tr{Aµ(x)φ(x)} · φ(x) = Aφ

µ · φ(x). (75)

Aφ
µ is the image of the gauge field Aµ(x) projected into

the original U(1) gauge manifold without a fixed frame.

The gauge transformation of this gauge field is g (x) =
exp

[
iφ3 · ϕ3 (x)

]
for a given frame φ3. The φ3-direction

covariant derivative operator D̂µ of the gauge theory with-
out a fixed frame is

D̂φ
µ = ∂̂µ + ieAφ

µ + i�µ. (76)

The original U(1) gauge field strength turns into

F̃φ
µν(x) ≡ 1

ie

(
[D̂φ

µ, D̂
φ
ν ]− [∂̂µ, ∂̂ν ]

)
(77)

= ∂µÃ
φ
ν (x)− ∂νÃ

φ
µ(x) + ie[Ãφ

µ(x), Ãφ
ν (x)].

Based on this, the gauge field strength is defined by

Fµν(Aφ
µ) = ∂µA

φ
ν (x)− ∂νA

φ
µ(x). (78)

The original U(1) gauge field obtains another U(1) lo-
cal symmetry and turns into U(1) × U(1) gauge theory
– one group element is exp(iδϕ3φ3) with fixed frame φ3;
the other group gauging the frame φ3. The operator L
transforms φ (x) to another φ′ (x):

L
[
φ3 (x)

]
= U−1φ3 (x)U = φ3′ (x) . (79)

The gauge field strength is just the curvature Rµν ,

Rµν = ∂µ�ν − ∂ν�µ. (80)

Because φ3(x) = U−1(x)T 3U(x), the frame connection
field � becomes the Maurer–Cartan form as a pure gauge

Rµν

[
U−1(x)∂µU(x)

]
= 0, (81)

while for topological non-trivial gauge transformations
U(x), one has a non-zero curvature Rµν �= 0.

4.2 U(1) gauge field induced by quantum fluctuations
of gauge modes

Because the frame may fluctuate, we replace the fixed
frame T a by a frame field φ and exp

[
iT 1ϕ1 (x) + iT 2ϕ2

(x)] by exp
[
iφ1ϕ1 (x) + iφ2ϕ2 (x)

]
. The gauge modes

g = g0 exp [iφ ·ϕ] = g0 exp
[
iφ1ϕ1 (x) + iφ2ϕ2 (x)

]
(82)

are also divided into two parts: one is the slowly varying
vector g0; the other the fast one, ϕ (x). By g0 and ϕ (x),
we can rewrite the action

Sgf = − 1
2λ

∫
dx2tr

[(
g−1∂µg + ieg−1Aφ

µg
)2

+ iαC±(x)C±
(x)

]
(83)

as

Sgf = S
(
g0, A

φ
µ

)
+

1
2λ

∫
dx2tr

{
[∂µ (φ ·ϕ)]2 (84)

+
(
g−1
0 ∂µg0 + ieg−1

0 Aφ
µg0

)
[φ ·ϕ, ∂µ (φ ·ϕ)]

}
.
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The relevant terms concerning frame fluctuations become

∂µ (φ ·ϕ) = ∂µ (φaϕa) = φa∂µϕ
a + ∂µφ

aϕa (85)

= φa∂µϕ
a + φbωab

µ ϕa,

where a = 1, 2. The definition of the frame connection is
used:

∂µφ
a = φbωab

µ . (86)

The frame φa is really a set of vierbein fields and ωab is
the Maurer–Cartan one-form.

From

∂µφ
a = ∂µU

−1T aU + U−1T a∂µU (87)

=
[
φa, U−1∂µU

]
,

a relation between U−1∂µU and ωab
µ is obtained as follows:[

φa, U−1∂µU
]

= φbωab
µ . (88)

The solution is easy to find:

U−1∂µU = −i�µ =
1
cv
εab3φ

3ωab
µ , (89)

where cv = 2 is the quadratic Casimir operator in the
adjoint representation for the SU(2) Lie group. We rewrite
the solution as

φa�µ =
1
2
φbωab

µ . (90)

The relevant terms for the frame fluctuations become

∂µ (φ ·ϕ) = ∂µ (φaϕa) = φa∂µϕ
a + ∂µφ

aϕa (91)

= φa∂µϕ
a + φbωab

µ ϕa

= φa [(∂µ + 2�µ)ϕa] .

In the disorder phase, the Goldstone modes ϕ (x) have a
mass gap m2; the relevant terms for the frame fluctuations
are

1
2λ

∫
dx2 [| φ · (∂µ + 2�µ) ϕ |2 +m2ϕ2] . (92)

Hence the Goldstone modes of NLSM are bosons with
charge 2 in the presence of a gauge field �µ.

We obtain the expression of the expansion of the renor-
malization 2-point function �µ�ν at one-loop order:

4
(2π)2

∫
d2k

[
(kµ + 2pµ)(kν + 2pν)

(k2 + m2)((k + p)2 + m2)

−2δµν
1

k2 + m2

]

=
4

(2π)2

∫
d2k

∫ 1

0
dx

×
[

(kµ + 2pµ)(kν + 2pν)− 2((k + p)2 + m2)
(k2 + 2pk + p2x + m2)2

]

=
4

(2π)2

∫ 1

0
dx

π

[p2x (1− x) + m2]
(1− 2x)2

× (
pµpν − δµνp

2) . (93)

In the low energy limit p2 → 0, we simplify the above
integral to the following one:

4
(2π)2

∫ 1

0
dx

π

m2 (1− 2x)2
(
pµpν − δµνp

2) (94)

=
4

(2π)2
π

3m2

(
pµpν − δµνp

2) .
Because of quantum fluctuations of the massive charged
scalar field, a kinetic term of the connection field is in-
duced:

1
ē2�

tr
[(
pµpν − δµνp

2)�µ�ν

]
, (95)

where the induced coupling constant is

ē2
� = 3πm2. (96)

For reasons of the U(1) local symmetry, the corresponding
action of the kinetic term is

Sind (�µ) =
∫

d2x

[
1
4

(∂µ�ν − ∂ν�µ)2
]
. (97)

Correspondingly in the Yang–Mills vacuum the total glu-
onic vector potential Aµ splits into two components,

Ãµ = Aφ
µ +

1
e
�µ. (98)

One is the perturbative part Aφ
µ; the other the nonper-

turbative �µ. In this picture, �µ is just a Parisi–Sourlas
field in lower dimensions which maintains the stochastic
picture of the vacuum. In the propagator of the vector field
�µ (x), a massless pole appears. Hence the frame connec-
tion field �µ (x) becomes a dynamical gauge field in two
dimensions, giving rise to a confining potential.

4.3 Confinement potential
from the frame connection field

After obtaining the frame connection field ωµ, we absorb
the unphysical gauge modes g into the gauge field Aφ

µ(x)
through a gauge transformation Ω−1:

(
1/(ie)g−1∂µg + g−1Aφ

µ(x)g
)Ω−1

=
((
Aφ
µ

)Ω)Ω−1

= Aφ
µ(x).

Now the action is independent of the gauge modes g and
we can isolate the integral

∫
DΩ in a normalization factor.

Because the frame is not a fixed one in the disorder phase,
we replace D̂µ by D̂φ

µ, Aa
µ(x) by Ãφ

µ(x) and F a
µν(x) by

F̃φ
µν(x).

Originating from the term F̃φ
µν(x)F̃φµν(x), there ap-

pears a four-dimensional kinetic term of the frame con-
nection field,

S4 (�µ) =
∫

dx4
[
−1

2
(∂µ�µ − ∂ν�µ)2

]
. (99)
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Since �µ lies in two dimensions, the above term should
be absorbed into Sind (�µ) as follows:

S (�µ)
= Sind (�µ) + S4 (�µ)

= Sind (�µ) +
∫

dx4
[
−1

2
(∂µ�µ − ∂ν�µ)2

]

= Sind (�µ) +
∫

dx2
[
−1

2

∫
dz2 (∂µ�µ − ∂ν�µ)2

]

=
∫

d2x

[
1

2ẽ2�
(∂µ�µ − ∂ν�µ)2

]
, (100)

with
1

2ẽ2�
=

1
2ē2�

− 1
2

∫
dz2 =

1
2ē2�

. (101)

In the above equation, we have used∫
dz2 ≡ 0. (102)

Because of the Osp(4|2) supersymmetry, the frame con-
nection field �µ becomes a dynamical Parisi–Sourlas
Yang–Mills field Wl = Wl

(
xµ, θ, θ̄

)
after dimensional re-

covering [15,27]. The external sources of the dynamical
Parisi–Sourlas Yang–Mills fieldWl are restricted to a two-
dimensional space. The action can be rewritten as an ef-
fective model in superspace M,∫

d4x

∫
γ

4π
dθdθ̄

[
1

2ē2
�

(∂lWm − ∂lWm)2
]
, (103)

with l,m = µ, θ, θ̄.
Finally we arrive at the following dimensional mixing

Lagrangian

Lf =
Nf∏
i=1

ψ̄i

[
iγµ

(
∂̂µ + ieAφ

µ + iWµ

)
−Mi

]
ψi, (104)

LA = − 1
2e2

trFµν

(
Aφ
µ

)
Fµν

(
Aφ
µ

)− tr
(
∂µA

φ
µ

)2

2α
− trCφMCφ,

LW =
∫

γ

4π
dθdθ̄

[
1

2ē2�
(∂lWm − ∂lWm)2

]
,

Lint = − 1
2e2

trF̃φ
µνF̃

µνφ +
1

2e2
trFµν

(
Aφ
µ

)
Fµν

(
Aφ
µ

)
+

1
2

(∂µWν − ∂νWµ)2 .

Remember the fact that quantum fluctuations of the Wµ

field lies in two-dimensional superspace while all other
fields are in four dimensions. The dimensional constraining
condition must be noted that for all Feynman diagrams
the internal lines in two-dimensional superspace cannot
connect to the four-dimensional internal lines. This condi-
tion is very important, for it ensures that the frame con-
nection fieldWµ does not affect the perturbation behavior
of the Yang–Mills theory.

Feynman diagrams for quark–anti-quark scattering by
exchanging one gluon and one Wµ show the interaction
between them (massive or massless). It is not difficult to
obtain the potential between quark–anti-quark (massive
or massless) for QCD as

V (r) = − 1
4π

e2

r
− Vframe (r) , (105)

where

Vframe (r) = −3πΛ2

2
exp

(
− 1
be0e

2

)
r. (106)

This linear potential is equivalent to a string tension be-
cause

σ0 =
3πΛ2

2
exp

(
− 1
be0e

2

)
. (107)

This result shows that in the weak coupling region the
string tension obeys the scaling law suggested from the
result of the renormalization group based on the loop cal-
culations.

Because the boson field z has charge 1 of the frame
connection field −i�µ (in Appendix A), the linear poten-
tial Vframe (r) will be screened by it. Just for this reason we
consider Vframe (r) as a short range potential Vframe (r) =
VSR (r). Hence in the limit r → ∞, the confining force
exists only for non-integer external charges (in units of e).
When q/e is an integer, the external charges are screened,
q/e not integer, and such screening is incomplete, leaving
behind a long range confining potential

VLR (r) = −f
(q
e

)
Λ2 exp

(
− 1
be0e

2

)
r (108)

in the limit r → ∞, where f (q/e) is a function of q/e
with a period 1. The periodic behavior of the confining
potential with external charges q is found to be

VLR (r, q/e) = VLR (r, q/e± 1) . (109)

The function f (q/e) is calculated in the next section.

5 Source of confinement
from magnetic monopoles

5.1 Relation between instanton
of two-dimensional NLSM and the monopole
of four-dimensional gauge theory in abelian gauge

To obtain the O(3) NLSM, we use the adjoint representa-
tion,

g†(x)T 3g(x) = φ3 = n(x) = na(x)T a, (110)

and
na(x) = 2tr(φ3T a). (111)
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Let Aφ
µ = 0, C±(x) = C±

(x) = 0; the gauge fixing action
turns into the familiar O(3) NLSM

Sgf = − 1
2λ

∫
dx2tr

[(
g−1∂µg + ieg−1Aφ

µg
)2

+ iαC±(x)C±
(x)

]
, (112)

→ − 1
2λ

∫
dx2

× tr
[
g−1 (x) ∂µg (x)

]2
(g ∝ SU(2)/U(1))

=
1

2λ

∫
d2x [∂µn(x)]2 .

The O(3) NLSM in two dimensions has instanton and anti-
instanton solutions, because of the non-trivial homotopy
group,

Π2(SU(2)/U(1)) = Z.

The instanton is characterized by the Pontryagin index
(winding number) defined by

Q =
1

8π

∫
d2xεµνn · (∂µn× ∂νn). (113)

The action has a lower bound,

Sgf =
1

2λ

∫
d2x [∂µn(x) · ∂µn(x)] ≥ 4π

λ
|Q|. (114)

The Euclidean action of NLSM is minimized when the
above inequality is saturated if

∂µn = ±εµνn× ∂νn. (115)

Let us introduce a complex field w by a steregraphic pro-
jection from the north pole,

w1(x) =
n1(x)

1− n3(x)
, w2(x) =

n2(x)
1− n3(x)

; (116)

the instanton equation can be rewritten as

∂1w = ∓i∂2w, w = w1 + iw2. (117)

This is equivalent to the Cauchy–Riemann equation,

∂zw(z) = 0, z = x1 + ix2. (118)

This function must not only be analytic, but also mero-
morphic, since otherwise n would have a branch cut. A
typical instanton solution with topological charge Q is
given by

w(z) = [(z − z0)/ρ]Q, (119)

where the constants ρ and z0 are regarded as the size
and location of the instanton solution. The one instanton
solution implies the solution for the O(3) vector

n1 =
2ρx1

|z − z0|2 + ρ2 , (120)

n2 =
2ρx2

|z − z0|2 + ρ2 ,

n3 =
|z − z0|2 − ρ2

|z − z0|2 + ρ2 .

The action of NLSM is written as

Sgf = Sc =
4π
λ
Q =

1
be0e

2Q. (121)

An important fact is that instantons of NLSM can be
identified with magnetic monopoles of gauge theory. The
magnetic monopole current is

Kµ = − 1
2e
εµνρσε

abc∂νn
a∂ρn

b∂σn
c, (122)

and the magnetic monopole topological charge is defined
as

gm =
1

4π

∫
d3xK0 (123)

= − 1
4π

∫
d2σi

i
2e
εijkn · (∂jn× ∂kn)

=
1
e
Q.

If µ, ν is restricted to two dimensions, Q is the Pontryagin
index (winding number) in the NLSM in two-dimensional
space S2 = R2 ∪ {∞},

Q =
1

8π

∫
d2xεµνn · (∂µn× ∂νn). (124)

It is reasonable to assume that the behaviors of the
instantons in the two-dimensional NLS model can reflect
those of the magnetic monopoles. The contributions from
the magnetic monopoles are replaced by those from the
instantons in two-dimensional NLSM.

5.2 Area law for Wilson loop originating
from the magnetic monopole

Knowing the relation of the instanton in two-dimensional
NLSM with the magnetic monopole, we can evaluate the
Wilson loop expectation value from the contributions from
the magnetic monopoles which can be replaced by those
from the instantons in two-dimensional NLSM.

The diagonal Wilson loop operator is defined as

〈W C [A]〉 =
1
N tr

[
P exp

(
iq

∮
C
Ãφ
µ(x)dxµ

)]
(125)

=
1
N

∫
Dµ(φ)

× exp
[∫ (

iqφ3 ·Aφ
µ + i

q

e
�µ

)
dxµ

]
,

with the normalization factor N−1. For the planar di-
agonal Wilson loop C, it can be shown that the vector
potential Ãφ

µ(x) includes the two-dimensional component
�µ (x).

Considering only the nonperturbative part �µ (x), we
choose the loop C contained in the two-dimensional space.
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The line integral in the diagonal Wilson loop is rewritten
as

W C [�µ] =
1
N

∫
Dµ(φ) exp

[
i
q

e

∮
C
�µdxµ

]
. (126)

According to the Stokes theorem, it is equal to

W C [�µ] = exp
(

2πiq
e

[
e

4π

∫
S

εµνRµν(x)dS
])

(127)

for any surface S with a boundary C. The diagonal Wilson
loop in two-dimensional O(3) NLSM is rewritten as

W C [�µ] = exp
[
i
2πq
e

∫
S

d2x
1

8π
εµνn · (∂µn× ∂νn)

]
,

(128)
which is just the instanton number density. This implies
that the Wilson loop W C [�µ] counts the number of in-
stanton–anti-instantons existing in the area S bounded
by the loop C in O(3) NLSM.

Remember that the vacuum of NLSM is a kind of θ
vacuum defined as

|θ〉 =
+∞∑

n=−∞
einθ|n〉. (129)

In this paper the theta angle is zero, θ = 0, and the vac-
uum reads

|θ = 0〉 =
+∞∑

n=−∞
|n〉. (130)

The action with a topological angle θ is written

Sθ
gf = Sgf − iθQ = (n+ + n−)Sc
− iθ(n+ − n−), (131)

Sc =
4π
λ

=
1

be0e
2 .

n+ is the instanton number and n− the anti-instanton
number. In the θ vacuum the Wilson loop expectation
value is

〈W C [�µ]〉 =
∫

dµ(n)δ(n · n− 1)e−SgfW C [�µ]∫
dµ(n)δ(n · n− 1)e−Sgf

=
Zθ=2πq

C
Zθ=0 . (132)

Zθ=0 is the denominator defined by

Zθ=0 = 〈θ = 0|e−HT |θ = 0〉. (133)

On the other hand, Zθ=2πq
C is the numerator defined by

Zθ=2πq
C =〈
θ = 2πq inside loop C
θ = 0 outside loop C

∣∣∣∣∣ e−HT

∣∣∣∣∣ θ = 2πq inside loop C
θ = 0 outside loop C

〉
.

(134)

The calculation of the numerator Zθ=2πq
C reduces to the

construction of a system in a θ = 0 vacuum outside the
loop and that in a θ = 2πq vacuum inside the loop.

In the dilute-gas approximation, the calculation of the
tunneling amplitude is reduced to that of a single instan-
ton contribution n→ n+1. The term with n+ = 1, n− = 0
is given by

〈n = ±1|e−HT |0〉 =
∫

dµ(ρ)
∫

d2x exp(−Sc) exp(±iθ)

= BLτ exp(−Sc), (135)

where Lτ is the (finite but large) volume of two-dimen-
sional space and B is a normalization constant [28–32].
The tunneling amplitude of instantons 〈n|e−HT |0〉 is re-
lated to the number of well-separated instantons n+ and
anti-instantons n− such that Q = n = n+ − n− [20]. All
configurations with n+ instantons and n− anti-instantons
must be summed over.

In the dilute-gas approximation, the denominator
Zθ=0 is calculated to be

Zθ=0 = 〈θ = 0|e−HT |θ = 0〉 (136)

=
∞∑

n+,n−=0

(BLτ)n++n−

n+!n−!
exp [−(n+ + n−)Sc]

= exp
[
2(BLτ)e−Sc

]
,

where there is no constraint on the integers n+ or n−,
since we are summing over all Q = n+ − n−.

In the dilute-gas approximation, the numerator is

Zθ=2πq
C =

∞∑
nin

+ ,nin
−=0

(B|Area(C)|)nin
++nin

−

nin
+ !nin− !

× e−(nin
++nin

−)Sc+i(2πqg)(nin
+−nin

−) (137)

×
∞∑

nout
+ ,nout

− =0

(B(Lτ − |Area(C)|))nout
+ +nout

−

nout
+ !nout− !

× e−(nout
+ +nout

− )Sc

= exp {2B
×

[
|Area(C)| cos

2πq
e

+ (Lτ − |Area(C)|)
]

× e−Sc
}
.

|Area(C)| is the area enclosed by the loop C.
In the θ vacuum of NLSM, the Wilson loop expectation

value is

〈W C [�µ]〉 =
Iθ=2πq
C
Iθ=0 = exp

{−2Be−Sc

×
(

1− cos
2πq
e

)
|Area(C)|

}
, (138)

where the action Sc = 4π/λ = 1/(be0e
2). The Wilson loop

integral exhibits the area law. When q is not an inte-
gral multiple of the elementary charge e, the static quark



124 Kou Su-Peng: Quark-confinement mechanism for SU(2) Yang–Mills theory in abelian gauge

potential Vmonop(r) is given by the linear potential with
string tension σ,

Vmonop(r) = −σr,
σ = 2B

(
1− cos

2πq
e

)
exp

(
− 1
be0e

2

)
. (139)

It is obvious that Vmonop(r) is the long range linear po-
tential for it dominates the screening effect – when q =
Ne (N is an integer), the linear potential vanishes. Let
Vmonop(r) = VLR(r),

VLR (r) = Vmonop(r) = −f
(q
e

)
Λ2 exp

(
− 1
be0e

2

)
r

= −2B
(

1− cos
2πq
e

)
exp

(
− 1
be0e

2

)
r.

(140)

The periodic function f (q/e) is obtained as

f
(q
e

)
=

2B
Λ2

(
1− cos

2πq
e

)
. (141)

6 Confinement potential for quark–anti-quark

We have seen in the above sections that the confining po-
tential is a kind of nonperturbative quantum effect, not
only from the monopole (or the instanton of NLSM in
two dimensions), but also the induced Coulomb potential.
But the short range linear potential VSR(r) (unscreened
potential) is related to Vframe (r),

VSR(r) = Vframe (r) = −q
e

3πΛ2

2
exp

(
− 1
be0e

2

)
r, (142)

and the long range linear potential VLR(r) to Vmonop(r),

VLR (r) = Vmonop(r)

= −2B
(

1− cos
2πq
e

)
exp

(
− 1
be0e

2

)
r. (143)

For quark confinement, because the external charges
are ±e, an integral multiple of the elementary charge e, in
the limit r → ∞, the linear potential is totally screened.
Particularly the linear potential from the monopoles van-
ishes:

VLR (r) = Vmonop(R) = −2B exp
(
− 1
be0e

2

)

×
(

1− cos
2πq
e

)
r = 0, (144)

when q = ±e. Hence the confinement potential for quark
and anti-quark is a short range linear potential from frame
fluctuations,

VSR(r) = Vframe (r) , (145)

which has nothing to do with magnetic monopoles.

This remarkable result is consistent with that from
the confinement mechanism of frame fluctuations in the
Lorentz gauge. The gauge fixing term in the Lorentz gauge
of the four-dimensional SU(2) Yang–Mills field is reduced
to the two-dimensional SU(2)R × SU(2)L principal chi-
ral model. However, the two-dimensional principal chiral
model obtained by dimensional reduction does not have
any instanton solution, since

Π2 [SU(2)] = 0.

Remember that the two-dimensional O(3) NLSM has in-
stanton solutions because of

Π2 [SU(2)/U(1)] = Z.

In Appendix B the short range linear potential between
quark and anti-quark in Lorentz gauge is shown to be

V (r) = −c2

2
ē2
�r, ē

2
� =

3πm2

c2
. (146)

Without instanton solutions corresponding to monopoles
in Lorentz gauge, it is reasonable to conclude that the
confinement has no direct relation with monopoles.

Finally we draw our conclusions. The nonperturba-
tive contributions �µ come not only from the magnetic
monopole, but also from frame fluctuations, while only the
mechanism with frame fluctuations is related to quark con-
finement (short range linear potential for integer charges).

7 Conclusion

Let us give a summary.
The first step in this paper is PS dimensional reduc-

tion. By the PS dimensional reduction, the four-dimen-
sional SU(2) Yang–Mills field in abelian gauge is reduced
to the two-dimensional O(3) nonlinear σ model by the su-
perspace embedding (4s2γ) = iα. The coupling constant
λ for the O(3) nonlinear σ model is obtained from the
β (Λ) function of e2, and α is independent on the gauge
parameter α.

The aim of this paper is to calculate the confinement
potential from two sources: frame fluctuations and mono-
poles.

When the frame φ3 = U−1 (x)T 3U (x) is not fixed
in the Yang–Mills vacuum, the gauge field Aµ(x) turns
into Aφ

µ(x) + (1/e)�µ. The frame T a indeed cannot be
regarded as a fixed one and the nonperturbative part �
appears as a kind of Parisi–Sourlas field. In the propagator
of the vector field �µ (x), a massless pole appears. Hence
the frame connection field �µ (x) becomes a dynamical
gauge field in two dimensions, giving rise to a short range
confining potential.

On the other hand, the contribution to the linear po-
tential from monopoles is also obtained. Because the in-
stanton configuration in two-dimensional O(3) NLSM can
be identified with the magnetic monopole configuration
in four dimensions, the planar diagonal Wilson loop in
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four-dimensional SU(2) Yang–Mills theory in MA gauge
is calculated in the two-dimensional O(3) NLSM by mak-
ing use of the PS dimensional reduction. As a result, the
magnetic monopole leads to the area law of the Wilson
loop for external particles with non-integer charges.

From the fact that the short range confinement poten-
tial VLR(r) for the quark has nothing to do with Vmonop(r)
(for the simple reason of the integer charge of the quarks),
we draw the conclusion that the confinement mechanism
is from the frame fluctuations, not the monopole conden-
sation! This remarkable result in MA gauge is consistent
with that from the confinement mechanism of frame fluc-
tuations in Lorentz gauge.

Appendix A: Relation between O(3) NLSM
and CP1 model

The O(3) NLSM is locally isomorphic to the CP1 model
with the identification

na(x) :=
1
2
z∗
i (x)(T a)ijzj(x) (i, j = 1, 2), (A1)

or

n1 = Re(z∗
1z2), n2 = Im(z∗

1z2), n3 =
1
2

(|z1|2 − |z2|2).

(A2)
Actually, the following constraint is satisfied: nAnA =
(|z1|2 + |z2|2)2 = 1. The map from the CP1 model to
O(3) NLSM is identified with a Hopf map H : S3 → S2

where S3 denotes the unit three-sphere embedded in R4

by |z1|2 + |z2|2 = 1.
For CP1, one can define a vector field

Vµ(x) = iz∗(x) · ∂µz(x). (A3)

The vector field Vµ is equivalent to the frame connection
field −i�µ. So the O(3) NLSM is equivalent to the CP1

model,

Sgf =
1

2λ

∫
d2x (∂µn)2 (A4)

=
2
λ

∫
d2x [(∂µ − iVµ) z]2

=
2
λ

∫
d2x [(∂µ + �µ) z]2 .

Appendix B: Confinement mechanism
of frame fluctuations in Lorentz gauge

The Lorentz type gauge fixing term is written

Lgf = −tr
(
ν∂µA

Ω
µ +

α

2
ν2 + C∂µDµ

[
(AΩ

µ )
] C) , (B1)

where the gauge field AΩ
µ is gauge dependent on

AΩ=g
µ = g−1Aµg +

1
ie
g−1∂µg.

By the BRST δB and anti-BRST δ̄B [14–19,13], Lgf turns
into the form

Lgf = iδB δ̄Btr
[

1
2

(AΩ
µ )2 +

iα
2
CC

]
, (B2)

which is a contravariant supervector which transforms like
the supercoordinate under Osp(4 | 2) [14–19,13].

The derivatives in the direction of θ, θ̄ proportional to
the BRST and the anti-BRST transformations are

∂

∂θ
=sδB ,

∂

∂θ̄
=sδ̄B , (B3)

where s is the superspace embedding factor to be de-
termined. One requires Aµ(X) |θ=0,θ̄=0= Aµ(x, 0, 0) =
Aµ(x) and “the superspace embedding relation” is found
to be

Aθ(x) = sC(x), Aθ̄(x) = sC(x), (B4)

ηNMAM (X)AN (X) = [Aµ(X)]Ω [Aµ(X)]Ω

+ iαC(X)C(X). (B5)

From this, the relation between s and γ in superspace is
obtained as

(
4s2γ

)
= ia.

Then the action is reduced to a two-dimensional sigma
model:

Sgf = − 1
2λ

∫
dx2tr

[(
g−1∂µg + ieg−1Aµg

)2

+ iαC(x)C̄(x)
]
, (B6)

where λ = −be0e2/bλ0 .
Two-dimensional SU(2)R × SU(2)L principal chiral

model has only one phase: a disorder phase without long
range order,

〈g〉 |2D= 0. (B7)

Goldstone excitons are massive. Up to one loop, the mass
gap of the principal chiral model in two dimensions has
been obtained in a large N approximation;

m2 = Λ2 exp
(
−8π

3λ

)
= Λ2 exp

(
− 1
be0e

2

)
, (B8)

where Λ is a cut-off.
In the disorder phase frame fluctuations are induced by

quantum fluctuations of the gauge modes and the frame
T a cannot be regarded as a fixed one. We introduce the
frame field φ(x) = U−1(x)T aU(x) (U(x) ∈ SU(2)R ×
SU(2)L/SU(2)) to indicate the color-direction variable.
φ(x) is a composite field of the gauge modes g(x).

Without a fixed frame, the gauge field Aµ(x) =
Aa
µ(x)T a changes its path-integral form. Accordingly, the

gauge field Ãφ
µ(x) without fixed frame turns into Aφ

µ(x) +
(1/e)�µ where

Aφ
µ(x) = 2tr{Aµ(x)φ(x)} · φ(x) = Aφ

µ · φ(x). (B9)
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Aφ
µ is the image of the gauge field Aµ(x) projected into

the original SU(2) gauge manifold without a fixed frame.
�µ is a new SU(2) gauge field in two dimensions denoted

�µ(x) = iU−1(x)∂µU(x). (B10)

The gauge transformation is g (x) = exp [iφ ·ϕ (x)] for a
given frame φ. The φ-direction covariant derivative oper-
ator D̂µ of the gauge theory without a fixed frame is

D̂φ
µ = ∂̂µ + ieAφ

µ + i�µ. (B11)

Hence the original SU(2) Yang–Mills field obtains another
SU(2) local symmetry and turns into SU(2)× SU(2) gauge
theory – one group element is exp(iδϕaφa) with fixed
frame φa; the other group gauging the frame φa.

Because the frame may fluctuate, we replace the fixed
frame T a by a frame field φ and exp [iT aϕa (x)] by
exp [iφ ·ϕ (x)]. In the disorder phase, Goldstone modes
ϕ (x) have a mass gap m2, and the relevant terms of Gold-
stone modes are

1
2λ

∫
dx2 [| φ · (∂µ + 2�µ) ϕ |2 +m2ϕ2] . (B12)

Hence the Goldstone modes of the principal chiral model
are bosons with charge 2 in the presence of a gauge field
�µ. Because of the SU(2) local symmetry, the correspond-
ing action of the kinetic term that is induced is

Sind (�µ) =
∫

d2x

[
1

2ē2
�

tr (∂µ�ν − ∂ν�µ + [�µ, �υ])2
]
.

(B13)
Correspondingly in the QCD vacuum the total gluonic
vector potential Aµ splits into two components:

Ãµ = Aφ
µ +

1
e
�µ. (B14)

One is the perturbative part Aφ
µ; the other the nonpertur-

bative �µ. �µ is not a superposition of classical solutions
like instantons, monopoles etc., but from purely quantum
fluctuations. In this picture, �µ is just a Parisi–Sourlas
field in two dimensions which maintains the stochastic pic-
ture of the vacuum. In the propagator of the vector field
�µ (x), a massless pole appears. Hence the frame connec-
tion field �µ (x) becomes a dynamical gauge field in two
dimensions, giving rise to a confining potential.

Feynman diagrams for quark–anti-quark scattering by
exchanging one gluon and one �µ show the interaction
between them (massive or massless). It is not difficult to
obtain the potential between quark and anti-quark (mas-
sive or massless) in four dimensions:

V (r) = − c2
4π

e2

r
− c2

2
e2ωr, (B15)

where

ē2� =
3πm2

c2
=

9πΛ2

4
exp

[
− 1
be0e

2

]
. (B16)

This linear potential is equivalent to a string tension:

σframe =
3πΛ2

2
exp

[
− 1
be0e

2

]
, (B17)

which shows the result of the renormalization group based
on the loop calculations in the weak coupling region [3].

References

1. C.N. Yang, R.L. Mills, Phys. Rev. 96, 191 (1954)
2. M. Gell-Mann, Phys. Lett. 8, 214 (1964); C. Zweig, CERN

Rep. 8419/TH 412
3. M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. Lett. 42, 1390

(1979); M. Creutz, Phys. Rev. Lett. 43, 553 (1979); Phys.
Rev. D 20, 1915 (1979)

4. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973);
H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

5. Y. Nambu, Phys. Rev. D 10, 4262 (1974 ); S. Mandelstam,
Phys. Rep. C 23, 245 (1976).

6. G. ’t Hooft, Nucl. Phys. B 190, 455 (1981)
7. H. Suganuma, S. Sasaki, H. Toki, Nucl. Phys. B 435, 207

(1995); H. Suganuma, S. Sasaki, H. Toki, H. Ichie, Prog.
Theor. Phys. (Suppl.) 120, 57 (1995)

8. G. ’t Hooft, Nucl. Phys. B 79, 276 (1974)
9. A.M. Polyakov, JEPT Lett. 20, 894 (1974); Phys. Lett. B

59, 82 (1975)
10. N. Seiberg, E. Witten, Nucl. Phys. B 426, 19 (1994); B

431, 484 (1994)
11. A. Kronfeld, G. Schierholz, U.-J. Wiese, Nucl. Phys. B

293, 461 (1987); S. Hioki, S. Kitahara, S. Kiura, Y. Mat-
subara, O. Miyamura, S. Ohno, T. Suzuki, Phys. Lett. B
272, 326 (1991); M. Polikarpov, Nucl. Phys. B 53, (PS)
134 (1997)

12. A. Migdal, Zh. Eksp. Teor. Fiz. 69, 810, 1457 (1975); Sov.
Phys. JETP 42, 413, 743 (1975); J.B. Kogut, Rev. Mod.
Phys. 51, 659 (1979)

13. K.-I. Kondo, hep-th/9801024, Phys. Rev. D 58, 105019
(1998); K.-I. Kondo, hep-th/9904045; hep-th/9911242

14. G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)
15. B. McClain, A. Niemi, C. Taylor, L.C.R. Wijewardhana,

Nucl. Phys. B 217, 430 (1983)
16. G. Curci, R. Ferrari, Phys. Lett. B 63, 91 (1976); I. Ojima,

Prog. Theo. Phys. 64, 625 (1980)
17. R. Delbourgo, P.D. Jarvis, J. Phys. A 15, 611 (1982)
18. A. Klein, L.J. Landau, J. Fernando Perez, Commun. Math.

Phys. 94, 459 (1984); A. Klein, J. Fernando Perez, Phys.
Lett. B 125, 473 (1983)

19. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981)
20. R. Rajaraman, Solitons and instantons (North-Holland,

Amsterdam 1989)
21. H. Suganuma, A. Tanaka, S. Sasaki, O. Miyamura, Nucl.

Phys. B 47, (PS) 302 (1996)
22. L.D. Faddeev, V.N. Popov, Phys. Lett. B 25, 29 (1967)
23. A.M. Polyakov, Nucl. Phys. B 120, 429 (1977); Gauge

fields and strings (Harwood Academic Publishers, London
1987)

24. E. Brezin, S. Hikami, J. Zinn-Justin, Nucl. Phys. B 165,
528 (1980); J. Zinn-Justin, Quantum field theory and crit-
ical phenomena (Oxford University Press, 1989)



Kou Su-Peng: Quark-confinement mechanism for SU(2) Yang–Mills theory in abelian gauge 127

25. E. Abdalla, M.C.B. Abdalla, K.D. Rothe, Nonperturbative
methods in 2 dimensional quantum field theory (World
Scientific, Singapore 1991)

26. K.-I. Kondo, Phys. Rev. D 57, 7467 (1998)
27. J. Kalkkinen, A.J. Niemi, Eur. Phys. J. C 4, 723 (1998)
28. A. Jevicki, Nucl. Phys. B 127, 125 (1977)

29. D. Förster, Nucl. Phys. B 130, 38 (1977)
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